If it's not what You are looking for type in the equation solver your own equation and let us solve it.
144t^2-225=0
a = 144; b = 0; c = -225;
Δ = b2-4ac
Δ = 02-4·144·(-225)
Δ = 129600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{129600}=360$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-360}{2*144}=\frac{-360}{288} =-1+1/4 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+360}{2*144}=\frac{360}{288} =1+1/4 $
| 9a-2(6a+3)=0 | | 2(-6+x)=x-7/2 | | 9z–7z=14 | | Q=150-50xP | | t^2=0.81 | | 3(x-5)-4(x-7)=6 | | (p-4)^2=17 | | -5f-10=-10 | | (7x6x)=(12x42x) | | x+x+0.5x+0.25x+3=300 | | 16y–13y=12 | | -7(2x-3)+5(3x-5)-6=3-2 | | t^2=81/100 | | 5=31n-21 | | 4x+4-9x+18=312(x+2) | | 3x+11(5-2x)=36 | | 9g+3.88=47.26 | | s^2=-4s+1 | | 7j–2j=20 | | 2/9x=20 | | 4x+4-9x+18=3122 | | Z^3=(3)^1/2-i | | 3x=2×+2 | | 47.26=9g+3.88 | | 7y+12=11y-8 | | -2b+4=3;b=1/2 | | Z^3=(2)^1/2-i | | 3b-9=21;b=-10 | | 40+4x+80+5x=264 | | 1/2n+4;n=12 | | 16=12+n/3 | | (X)=x^2+6x-40 |